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Fig.1. Symmetry elements of the 422 point group and corresponding reference frame

We will use the Neumann’s principle. 

In general, the dielectric tensor has the following form: 

𝐾𝑖𝑗 = (
𝐾11 𝐾12 𝐾13
𝐾12 𝐾22 𝐾23
𝐾13 𝐾23 𝐾33

) 

1
′

2
′

3
′

We will apply the element of symmetry in point group 2 in order to obtain all symmetry 

restrictions on the tensor. 

Two-fold axis: directed along [1̅10]

During this transformation, the reference frame changes as: 𝑥 = −𝑥2, 𝑥 = −𝑥1, 𝑥 = −𝑥3. 
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′
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′
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′
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′
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′
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′
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′
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′
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′

𝐾′11~𝑝 𝑝 = (−𝑝2)(−𝑝2) = 𝑝2𝑝2~𝐾22
𝐾′22~𝑝 𝑝 = (−𝑝1)(−𝑝1) = 𝑝1𝑝1~𝐾11
𝐾′33~𝑝 𝑝 = (−𝑝3)(−𝑝3) = 𝑝3𝑝3~𝐾33
𝐾′12~𝑝 𝑝 = (−𝑝2)(−𝑝1) = 𝑝1𝑝2~𝐾12
𝐾′13~𝑝 𝑝 = (−𝑝2)(−𝑝3) = 𝑝2𝑝3~𝐾23
𝐾′23~𝑝 𝑝 = (−𝑝1)(−𝑝3) = 𝑝1𝑝3~𝐾13

According to Neumann principle, the tensor must not change during this transform: 

𝐾′𝑖𝑗 = 𝐾𝑖𝑗

(
𝐾22 𝐾12 𝐾23
𝐾12 𝐾11 𝐾13
𝐾23 𝐾13 𝐾33

) = (
𝐾11 𝐾12 𝐾13
𝐾12 𝐾22 𝐾23
𝐾13 𝐾23 𝐾33

) 

Thus, 𝐾11 = 𝐾22, 𝐾13 = 𝐾23. 

As a result, after applying the two-fold axis [1̅10], the tensor has the following form: 

𝐾𝑖𝑗 = (
𝐾11 𝐾12 𝐾13
𝐾12 𝐾11 𝐾13
𝐾13 𝐾13 𝐾33

) 

Finally, it is known (from tables of the course), that in point group 2 the symmetry of the 

dielectric response, as of any other symmetric second rank tensor, is 𝑚𝑚𝑚.  
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1. As a result of a phase transition, a crystal of the 422 symmetry loses all elements of point 
symmetry except for the 2-fold axis marked with ‘A’ in Fig.1. Find the variation in the dielectric 
constant tensor caused by this phase transition. For the presentation of this tensor, use the 
crystallographic reference frame corresponding to symmetry 422 (shown in the Fig. 1). The 
information from the table of K-tensors can be used without additional justification.

What change of the symmetry of the dielectric response is induced by this transition? 

Test  of 15.04.2025: Solutions



            2 . The piezoelectric coefficient 11d of quartz (symmetry 32 )  is measured using a 

setup where the plates of the capacitor are parallel to (100) plane of the crystal (as shown in 

Fig.2). The sample can freely expand in X2 and X3 directions as shown in Fig.2. The 
measurements are done twice: under isothermal and under adiabatic conditions. Will be any 

differences between the results of the measurements? 

The information from all tables of the course can be used without additional 

justification. 

Fig.2. Experimental setup used for piezoelectric coefficient measurements.

Solution: 

The piezoelectric response in the system is sought experimentally as: 

𝑑11
(exp)

=
𝑄

𝐹
=
𝑆𝐷1
𝑆𝜎1

=
𝐷1
𝜎1
, 

where 𝑄 is the charge flown through the galvanometer, 𝐹 is the force applied to the surfaces, 

𝑆 is the surface area. To find the relation between 𝐷1 and 𝜎1, we will use the constitutive 

equations at constant temperature: 

𝐷𝑖 = 𝜀0𝐾𝑖𝑗𝐸𝑗 + 𝑑𝑖𝑗𝜎𝑗 + 𝑝𝑖𝛿𝑇 

In the investigated problem, the electrodes are short-circuited (𝐸1 = 0), and the sample can 

freely expand in 𝑥2 and 𝑥3 directions (among all stress components, only 𝜎1 ≠ 0). Equation 

for 𝐷1 thus has the following form: 

𝐷1 = 𝜀0𝐾12𝐸2 + 𝜀0𝐾13𝐸3 + 𝑑11𝜎1 + 𝑝1𝛿𝑇 

As a next step, we apply symmetry restrictions of group 32. First, tensor of dielectric 

permittivity has only diagonal components (𝐾12 = 𝐾13 = 0). Second, most important, a 

material of symmetry 32 is not pyroelectric, thus 𝑝1 = 0. Taking these symmetry restrictions 

into account, we rewrite the equation for 𝐷1 as follows: 

𝐷1 = 𝑑11𝜎1 

𝑑11
(exp)

= 𝑑11 

The value of piezoelectric response measured experimentally does not depend on thermal 

conditions, whether it is thermostatic or adiabatic. The reason for this – symmetry 32 forbids 

pyroelectric response of the material. 

X3

X1

X2

3

G = galvanometer
(measures charge)
i.e. electrodes
considered short-
circuited



3.  The piezocaloric effect is measured in a sample of BaTiO3 (symmetry , the 

4-fold axis is directed along  direction). The experimental setup is shown in Fig.3. The 

surfaces of the sample are under open circuit condition, the sample can freely expand in 

and  directions, there is no heat exchange with the environment. Initial temperature of the 

sample is 300 K. 

Determine the change of the temperature at application of pressure 100 MPa in 

direction. Use the numerical values for BaTiO3 from the table below (  axis is directed along 

the 4-fold symmetry axis). The information from all tables of the course can be used without 

additional justification. 

s11 8.05 x 10
-12

 m
2
/N d15 392 x 10

-12
 C/N

s12 -2.35 x 10
-12

 m
2
/N d31 -35 x 10

-12
 C/N

s13 -5.24 x 10
-12

 m
2
/N d33 86 x 10

-12
 C/N

s33 15.7 x 10
-12

 m
2
/N K33 150 

C 2.42 x 10
6
 J/(m

3
·K) p3 -5 x 10

-4
 C/(m

2
·K)

α3 3.5 x 10
-5

 1/K εo 8.85 x 10
-12

 F/m

Fig.3. Experimental setup used for piezocaloric effect measurements. 

Solution: 

In the considered system, the application of pressure 𝜎3 triggers a change of temperature 𝛿𝑇. 

In order to find relation between these two parameters, we use constitutive equations: 

𝐷𝑖 = 𝜀0𝐾𝑖𝑗𝐸𝑗 + 𝑑𝑖𝑗𝜎𝑗 + 𝑝𝑖𝛿𝑇 

𝛿𝑄

𝑇
= 𝑝𝑖𝐸𝑖 + 𝛼𝑖𝜎𝑖 +

𝐶

𝑇
𝛿𝑇 

In the investigated problem, all surfaces are open-circuited (all 𝐷𝑖 = 0), thermally isolated 

from the environment (𝛿𝑄 = 0), and the sample can freely expand in 𝑥1 and 𝑥2 directions 

(among all stress components, only 𝜎3 ≠ 0). Equations for 𝐷3 and 𝛿𝑄 𝑇⁄  thus have the

following form: 

𝐷3 = 𝜀0𝐾13𝐸1 + 𝜀0𝐾23𝐸2 + 𝜀0𝐾33𝐸3 + 𝑑33𝜎3 + 𝑝3𝛿𝑇 = 0
𝛿𝑄

𝑇
= 𝑝1𝐸1 + 𝑝2𝐸2 + 𝑝3𝐸3 + 𝛼3𝜎3 +

𝐶

𝑇
𝛿𝑇 = 0 

As a next step, we apply symmetry restrictions of group 4𝑚𝑚. First, tensor of dielectric 

permittivity has only diagonal components (𝐾13 = 𝐾23 = 0). Second, the pyroelectric 
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response is directed along the 4-fold axis, thus 𝑝1 = 𝑝2 = 0. Taking these symmetry 

restrictions into account, we rewrite the equations for 𝐷3 and 𝛿𝑄 𝑇⁄  as follows:

𝐷3 = 𝜀0𝐾33𝐸3 + 𝑑33𝜎3 + 𝑝3𝛿𝑇 = 0 

𝛿𝑄

𝑇
= 𝑝3𝐸3 + 𝛼3𝜎3 +

𝐶

𝑇
𝛿𝑇 = 0 

From first equation, it is possible to find the dependence of electric field on other parameters: 

𝐸3 = −
𝑑33
𝜀0𝐾33

𝜎3 −
𝑝3
𝜀0𝐾33

𝛿𝑇 

Substituting 𝐸3 to the second equation: 

𝛿𝑄

𝑇
= 𝑝3 (−

𝑑33
𝜀0𝐾33

𝜎3 −
𝑝3
𝜀0𝐾33

𝛿𝑇) + 𝛼3𝜎3 +
𝐶

𝑇
𝛿𝑇 = 0 

𝜎3 (𝛼3 −
𝑝3𝑑33
𝜀0𝐾33

) + 𝛿𝑇 (
𝐶

𝑇
−

𝑝3
2

𝜀0𝐾33
) = 0 

𝛿𝑇 = −
𝛼3 −

𝑝3𝑑33
𝜀0𝐾33

𝐶
𝑇 −

𝑝3
2

𝜀0𝐾33

𝜎3 

Substituting the numerical values: 

𝛼3 = 3.5 × 10
−5 1/K, 𝑝3 = −5 × 10

−4 C⁄(m2 ⋅ K), 𝑑33 = 86 × 10
−12 C/N, 𝜀0 = 8.85 ×  10−12 F/m,

𝐾33 = 150, 𝐶 = 2.42 × 106 J/(m3 ⋅ K), 𝑇 = 300 K, 𝜎3 = -108 Pa, we obtain:

𝛿𝑇 = −
3.5 × 10−5 +

5 × 10−4 ⋅ 86 × 10−12

8.85 × 10−12 ⋅ 150
2.42 × 106

300 −
(5 × 10−4)2

8.85 × 10−12 ⋅ 150

(-108) = −
3.5 × 10−5 + 3.24 × 10−5

8.07 × 103 − 0.188 × 103
⋅ (-108)

=
6.74 × 10−5

7.88 × 103
⋅ 108 = 0.86 K

To conclude, application of pressure 100 MPa will lead to 0.86 K change of temperature. 
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4
In the framework of the problem, the voltage applied to (001) electrodes creates electric field 

with non-zero 𝑥3 component, 𝐸3 = 𝐿
𝑉
, and the temperature change 𝛿𝑇 is measured. To find the 

relation between 𝛿𝑇 and 𝐸3, we will use the constitutive equations for thermally isolated 

system: 

𝜀𝑖 = 𝑑𝑗𝑖𝐸𝑗 + 𝑠𝑖𝑗𝜎𝑗 + 𝛼𝑖𝛿𝑇, 

𝛿𝑄 = 𝑇𝑝𝑖𝐸𝑖 + 𝑇𝛼𝑖𝜎𝑖 + 𝐶𝛿𝑇 = 0. 

In case (a), the sample is mechanically free, implying all 𝜎𝑖 = 0. Then, 

𝛿𝑄 = 𝑇𝑝1𝐸1 + 𝑇𝑝2𝐸2 + 𝑇𝑝3𝐸3 + 𝐶𝛿𝑇 = 0 

For geometry 4mm with 4-fold axis directed along 𝑥3, symmetry restrictions impose 

𝑝1 = 𝑝2 = 0, 𝑝3 ≠ 0. Therefore, 

𝑇𝑝3𝐸3 + 𝐶𝛿𝑇 = 0 

𝛿𝑇(𝑎) = −𝑇𝐸3

𝑝3
= −𝑇

𝑉 𝑝3
. 

C 𝐿 C
To conclude, when the electric field is directed along the pyroelectric response 𝑝 (i.e. 
antiparallel to the polarization vector P) the temperature of the sample decreases. When it is 

directed in the opposite direction, the temperature increases. 

In case (b), the sample is kept mechanically free in 𝑥1 and 𝑥2 directions, implying 

𝜎1 = 𝜎2 = 𝜎4 = 𝜎5 = 𝜎6 = 0, and 𝜎3 ≠ 0. The constitutive equation for 𝛿𝑄 is then simplified 

into: 

𝛿𝑄 = 𝑇𝑝3𝐸3 + 𝑇𝛼3𝜎3 + 𝐶𝛿𝑇 = 0. 

To find 𝜎3, we use the constitutive equation for 𝜀3 = 0, which must not change during the 

measurement: 
𝜀3 = 𝑑13𝐸1 + 𝑑23𝐸2 + 𝑑33𝐸3 + 𝑠33𝜎3 + 𝛼3𝛿𝑇.

The symmetry restrictions on a material of 4mm point group  imply  𝑑13 = 𝑑23 = 0, a nd

𝑑33 ≠ 0. Then, 

𝜀3 = 𝑑33𝐸3 + 𝑠33𝜎3 + 𝛼3𝛿𝑇 = 0   ⇒    𝜎3 = −
𝑑33

𝑠33
𝐸3 −

𝛼3

𝑠33
𝛿𝑇, 

𝛿𝑄 = 𝑇𝑝3𝐸3 + 𝑇𝛼3𝜎3 + 𝐶𝛿𝑇 = 𝑇𝑝3𝐸3 + 𝑇𝛼3 (−
𝑑33

𝑠33
𝐸3 −

𝛼3

𝑠33
𝛿𝑇) + 𝐶𝛿𝑇 = 

= 𝑇 (𝑝3 −
𝛼3𝑑33

𝑠33
) 𝐸3 + (𝐶 − 𝑇

𝛼3
2

𝑠33
) 𝛿𝑇, 

𝛿𝑇(𝑏) = −𝑇𝐸3

𝑝3 −
𝛼3𝑑33

𝑠33

𝐶 − 𝑇
𝛼3

2

𝑠33

≈ −𝑇𝐸3

𝑝3 −
𝛼3𝑑33

𝑠33

𝐶
= −𝑇

𝑉

𝐿

𝑝3 −
𝛼3𝑑33

𝑠33

𝐶

neglected. Since 
𝛼3𝑑33

𝑠33
> 0, and p3 < 0 the change of temperature is larger in case (b),

the difference is:

𝛿𝑇(𝑎) − 𝛿𝑇(𝑏)

𝛿𝑇(𝑎)
=

𝛼3𝑑33

𝑝3𝑠33
=

3.5 × 10−5 ⋅ 86 × 10−12

5 × 10−4 ⋅ 15.7 × 10−12
= 0.38

As in case (a), when the electric field is directed along the pyroelectric response 𝑝⃗, the 

temperature of the sample decreases. When it is directed in the opposite direction, the 

temperature increases. 

-




